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Disclaimer

The information, documentation and figures available in this deliverable are written by the
MAMI consortium partners under EC co-financing (project H2020-ICT-688421) and does not
necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The user uses the information at its
sole risk and liability.
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Executive Summary

This deliverable specifies the Path Layer UDP Substrate (PLUS), a UDP-based, shim-layer pro-
tocol for middlebox cooperation. Further, this deliverable explains how middlebox cooperation
mechanisms that have been developed by the project for use with PLUS can be applied to
other new and existing protocols at different layers. It additionally provides a security analysis
for middlebox cooperation mechanisms, with PLUS as one example. Moreover, this deliverable
also specifies a protocol-independent transport to application interface, called Post Sockets,
that supports flexible protocol selection, without requiring changes to applications, in order to
enable faster deployment of new protocols such as PLUS within a more Flexible Transport Layer
(FTL).
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1 Introduction to the Middlebox Cooperation Concept
in the Path Layer

The deployment of encrypted transport protocols imposes new challenges for network man-
agement. Key in-network functions such as those implemented by firewalls and passive mea-
surement devices currently rely on information exposed by the transport layer. Encryption, in
addition to improving privacy, helps to address ossification of network protocols caused by mid-
dleboxes that assume certain information to be present in the clear. However, “encrypting it all”
risks diminishing the utility of these middleboxes for the network management tasks for which
they were designed. A middlebox cannot use what it cannot see.

With the design of an explicit middlebox cooperation protocol, we propose an architectural
solution to this issue, introducing a new Path Layer for transport-independent, in-band signaling
between Internet endpoints and network elements on the paths between them. Such a layer
reinforces the boundary between the hop-by-hop network layer and the end-to-end transport
layer, by separating stateful network functionality from forwarding or simple per-packet handling
and enabling an opportunity to encrypt all high-layer information that is not indented for network
usage respectively.

In the following subsections we will outline our design goals for such a path layer header and
describe the abstract mechanisms for sender-to-path and path-to-receiver signaling, providing
integrity-protected, enhanced signaling under endpoint control. Further in this chapter, we
detail an additional use case, compared to the use cases described in D3.1, for use of the
path layer for explicit network performance measurements. Since the start of the project it
has become more and more clear that network monitoring is the most critical use case for the
deployment of explicit path signal for existing network operations. As such we outline this use
case and its requirements and needed mechanisms in detail in this deliverable inline with the
Principles for Measurability in Protocol Design as developed within the project [2].

In the next chapter we specify the Path Layer UDP Substrate (PLUS), a path layer header on
top of UDP to provide a common wire image for new, encrypted transports that can provide an
integrity-protected replacement for signals that are not available with encrypted traffic anymore,
as well as additional enhanced signaling to support our use cases as described in D3.1 and
section 1.3. This specification is base on previous work in the IETF, as documented in several
Internet Drafts [45, 40, 21] and published in an academic publication for further dissemination
the the research community [26].

Since the start of the project, we have disseminated our proposed approach via standardiza-
tion. While middlebox cooperation is still under discussion in standardization, especially with
the development of a new encrypted transport protocol as well as increased deployment of
encryption on all layers, the discussion about the introduction of an explicit path layer signaling
protocol did not come to a conclusion that led to the creation of a working group in the IETF.
Deployment of the PLUS protocol, however, must be supported by both the endpoint, in terms
of OS and software vendors, as well the network or network devices that can use and provide
PLUS-based information. Without a standardized protocol, deployment cannot be fostered by
only one of the parties. However, based on on-going work and discussion, we illustrate in chap-
ter 3 how the mechanisms and principles develop for and with PLUS can be applied to existing
protocols or approaches that are currently under development in standardization.

Chapter 4 provides a detailed analysis of attacks on middlebox cooperation mechanisms, as
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provided by PLUS as well as based on existing protocols that (often unintentionally) provide
cooperation facilities, and new encrypted protocols that intentionally expose information to the
network.

Further, with the goal to enable more flexible protocol development, deployment, and run-
time selection of protocols, as foreseen on top of PLUS, the project is working on a protocol-
independent, message-based transport interface. Chapter 5.1 describes the basic components
of the Post Sockets interface and discusses basic usage scenarios as we are investigating in
experimentation.

1.1 Design Goals

In this section, we elaborate the design principles for our middlebox cooperation approach.
The design goals are derived from the first principles and functional requirements as previously
described in D3.1. They are set up to cover the functionality needed for middlebox coopera-
tion use cases, to maximize deployability on today’s Internet based on measured observations
about devices currently deployed, and based on present best practices in protocol design and
implementation:

1. An endpoint should be able to explicitly expose any signals used by on-path de-
vices. We refer to this as sender-to-path signaling.

2. An endpoint should be able to request signals from devices on the path. We refer
to this as path-to-receiver signaling.

3. An on-path device should not be able to forge, change, or remove a signal sent by
an endpoint. This implies a need for end-to-end integrity protection for these signals.

4. The endpoint should control signaling between endpoints and the path, or from one
on-path device to another. The use of signaling on a given packet or flow is therefore
optional. An on-path device should not be able to force an endpoint to send a signal, or
to use the mechanism to send a signal of its own volition without explicit cooperation from
the endpoints. This can be achieved by integrity protection over a scratch space allowing
devices on path to send specified signals to receivers.

5. It should be possible for an endpoint to request and receive signals from a pre-
viously unknown on-path device. This implies that, in the absence of a cryptographic
introduction protocol or public-key infrastructure for on-path devices in the Internet – which
we consider to be impractical – authentication of signals from these on-path devices is
not possible.

6. The mechanism should present no significant surface for amplification attacks. We
can achieve this by specifying that no signal can request transmission of a packet beyond
forwarding the packet carrying the signal. This relies on in-band signaling, piggybacked
on higher-layer traffic.
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Figure 1: Sender-to-path signaling: signals are readable by on path-devices, but modification
is detected by the receiver

1.2 Abstract Mechanisms and Integrity Protection

From these first principles we define a set of simple abstract mechanisms for bidirectional in-
band signaling under endpoint control.

1. Sender-to-path signaling is unencrypted but with integrity protection, relying on the re-
ceiver to verify integrity. On-path devices can read these signals, but not verify their
authenticity. Modifications to these signals will be detected by the receiver, which can
respond by raising an error to the transport and/or application layer.

To make a declaration about a packet or flow to all path elements, the sender adds a
key-value pair to a packet within the flow, as shown in Figure 1. The fact that this is a
sender-to-path declaration is part of the definition of the key. Only one declaration can
appear in a single packet. The declarations, together with other transport and network
layer information which must not be modified by the path, are protected by a message
authentication code (MAC) sent along with the packet, generated with a key derived from
a secret known only to the endpoints.

The receiver then verifies the MAC on receipt. Verification failure implies an attempt to
modify the header used by this mechanism. Should a violation should be communicated
to the sender and may cause the transport association to reset.

2. Path-to-receiver signaling is also initiated by the sender. The sender places the re-
quested signaling type in the packet and creates a “scratch space” writable by on-path
devices in the packet. The length of the scratch space is fixed by the sender, to avoid
problems with downstream loss and/or fragmentation due to packet size changes along
the path. Path accumulation signals, such as those proposed in IPIM [2] and further
specified in Section 2.3, can also use this mechanism; in this case, the scratch space is
initialized by the sender to some value, and each device aware of the signal along the
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Figure 2: Path-to-receiver signaling: signal content is writable by on-path devices, but signal
presence is protected end-to-end. Signals can neither be added nor removed on path.

path updates it according to an algorithm specified by the type, until the final accumu-
lated value is received at the receiver. Since some path-to-receiver signals may be of
more use to the sender than the receiver, path-to receiver signaling can be augmented
by feedback, the return of the final value of a signal from the path by the receiver back to
the sender.

As shown in Figure 2, to allow one or more path elements to make a declaration about
itself with respect to a packet or a flow to the receiver, the sender adds a key-value pair
to a packet within the flow. The fact that this is a path-to-receiver declaration is part of
the definition of the key. Further, the value has a fixed length of N bytes (which my also
be part of the definition of the key). When calculating the MAC for a path-to-receiver
declaration, its value is assumed to be an N-byte array of zeroes. The MAC therefore
protects the presence of the key and the length of the value, but not its content.

The initial value of a path-to-receiver declaration is up to the sender, and is generally
defined by the declaration itself. The behavior of a path element in filling in a path-to-
receiver declaration given which value is already present is also part of the declaration
definition. Declarations may accumulate by some operation (e.g., max, min, sum for mea-
surement declarations), be determined by the first or last path element, or be addressed
to a specific path element to fill in.

These mechanisms rely on an upper layer to establish a cryptographic context in order to
establish a shared secret from which MAC keys can be derived. This cryptographic state may
be established with each transport session or may be resumable across multiple transport
sessions, depending on the upper layer’s design. If no context exists, though, the integrity of
the declarations made via these mechanisms cannot be protected by MAC. We propose two
possible solutions to this situation:

1. The mechanisms can be implemented such that MAC is mandatory. In this arrangement,
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no sender-to-path and/or path-to-receiver declarations can be made until cryptographic
context is bootstrapped. The vocabulary of declarations can therefore not include decla-
rations that must be sent on the first packet.

2. The mechanisms can be implemented such that the MAC is eventual. In this arrangement,
sender-to-path declarations can be made before cryptographic context establishment, but
are open to undetected modification along the path; path-to-receiver declarations are not
allowed before cryptographic context establishment. A MAC for previous sender-to-path
declarations must be sent after cryptographic context establishment; lack of receiving this
MAC within a defined (and small) number of packets from the sender is treated by the
receiver as verification failure and leads to transport association reset.

If a path element and the sender share some cryptographic context through some out-of-band
means, sender to path declarations can also be integrity protected using a MAC generated by
the sender and carried within the declaration itself. In this case, if the path element fails to verify
the MAC, it simply ignores the declaration.

Similarly, if a path element and the receiver share some cryptographic context through some
out-of-band means, path to receiver declarations can also be integrity protected using a MAC
generated by the path element and carried within the declaration itself. The use of a MAC is
part of the definition of the key. In this case, if the receiver fails to verify the MAC, it causes a
transport association reset.

This design pattern can also be used to address sender-to-path declarations to specific path
elements: a declaration with an encrypted value is inherently addressed to only those path
elements that possess the private or secret key to decrypt the value.

In each of these cases, the presence of a MAC within the declaration value and/or encryption
of the declaration value is part of the definition of the key. Further definition of mechanisms for
building cryptographic protocols over these mechanisms is out of scope for this specification of
the path layer header iteself.

1.3 Use Case: Network Performance Measurements

In addition to the use cases that have been outlined in D3.1 and that have been used to derive
requirements and subsequently the design principles for PLUS, the project is also focusing on
passive performance measurement as a central use case for PLUS given that presently pas-
sive performance measurements are mostly based on information available in the unencrypted
TCP header. This section discussed which information are desirable for network measurement
independent of the encoding on the wire. However, a path layer protocol like PLUS would of
course be the most preferred place to provide these signals to network elements that preform
network monitoring.

Basic metrics suffice for most performance measurement tasks: transmission rate, latency/jit-
ter, and packet loss rate. Transmission rate can be trivially measured by counting bytes asso-
ciated with a traffic flow, whether the headers are encrypted or not, then dividing this count by
the observation time interval. We therefore focus on latency and loss.

Latency measurement, as round-trip time, requires the ability to match packets in one direction
with packets in the opposite direction, for both directions of the flow. Current inference-based
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passive measurement approaches [37, 44] generally use the TCP Timestamp Option [7], when
available [15, 22]. Loss measurement, on the other hand, requires inference about the loss
detection and retransmission algorithms in use by the sender [4].

Loss and latency measurements are basic, key tools for network management, troubleshooting,
and diagnostics. For an operator to address performance issues within its network, it needs
to know the nature and magnitude of the performance issue, as well as its location – the most
important information being whether the issue is caused within the operator’s own network, or is
outside its domain of control. Loss and latency measurements at multiple points in the network,
and basic statistical functions over these measurements (loss pattern, latency variance, and so
on) are inputs to this process, as well as to diagnostic processes for a range of other faults:
inconsistent BGP routing, inappropriate forwarding rules, buffer management issues, and so
on.

In this section we discuss mechanisms that are designed to support explicit passive measur-
ability of latency and loss to replace inference-based approaches. These are also supported
by the PLUS basic header, see 2.1. We follow the principles proposed in [2] that measurement
should be explicit, in-band, visible, cooperative, and under the absolute control of the endpoint.
Indeed, we find that designing signals expressly for measurement, much of the messy inference
involved in turning a TCP packet stream into metric samples becomes unnecessary.

1.3.1 Latency Measurement

To measure latency, we propose a simplification of the arrival information primitive in [2]: a
simple Packet Serial Number (PSN) that increases by one with every packet sent, including
retransmissions and control packets (unlike TCP), and a packet serial echo (PSE) that reflects
the last packet number seen in the opposite direction. This is simple to implement, and pro-
vides adequate information for the calculation of latency between each endpoint and a passive
observation point on both the upstream and downstream path between them, e.g., at a network
border or home router (customer premises equipment, CPE) gateway, where these measure-
ments are usually deployed.

Given two endpoints a and b, an observation point c can measure the time interval between
seeing a given PSN on a packet sent by a and an equal or greater PSE on a packet sent by
b to get a latency estimate on the path c ↔ b. By reversing the measurement, it can likewise
estimate c↔ a, and a↔ b = c↔ b+ c↔ a.

1.3.2 Loss Estimation

Loss estimation on the path a→ c for packets in direction a→ b is supported by our PSN/PSE
latency measurement facility by counting gaps in the sequence of PSNs sent by a. However,
this gives no visibility into loss on the path c→ b.

To provide a solution that is transport protocol independent, we cannot simply expose transport
protocol internals: requiring observation points and measurement analysis to infer behavior of
endpoints based upon an identification of the transport protocol is precisely the current situation
we want to avoid. Therefore, we must rely on the receiver to expose information about the
loss and congestion experienced explicitly. We take design inspiration from the Congestion
Exposure (ConEx) protocol [9], and propose a sender-to-path signal for periodically exposing
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counts of detected packet loss and congestion signals to provide a delayed but accurate loss
metric to the path.

Each sender emits a periodic sender-to-path signal containing a two-tuple {l,m} where l is
a cumulative count of the number of detected losses l since the beginning of the flow and m
is a cumulative count of the number of detected ECN [30] marks since the beginning of the
flow. A measurement point can receive and analyze the series of signals to derive various loss
statistics: lt2 − lt1, for example, gives the number of losses detected by the sender in the time
interval (t1 − owd(a → c), t2 − owd(a → c)), where a first-order estimate of the one-way delay
from the sender owd(a → c) can be derived from RTT measurements1. Comparing this to the
observed packet transmission rate during the same interval, as well as to the upstream loss
information available from the PSN series, allows a measurement point to estimate upstream
as well as downstream loss rates. The addition of ECN marking information, similarly, together
with an analysis of observed Congestion Experienced (CE) codepoints at the IP layer, allows
the estimation of upstream and downstream congestion for ECN-enabled flows.

1Path asymmetry, of course, reduces the accuracy of this estimate. We leave accurate OWD estimation through
timestamp exposure and synchronization as a topic for future work.
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2 Path Layer UDP Substrate (PLUS) Specification

This section specifies PLUS. PLUS is realized as a shim header between the UDP header
and an encrypted transport header. The PLUS header explicitly exposes information intended
by the sender for use by devices along the path independent of the transport protocol, hiding
everything else with transport encryption.

PLUS defines two headers, a Basic Header carrying information for state management, basic
measurability, and simple packet treatment; and an Extended Header carrying a path commu-
nication field, described in Section 2.2. The Basic Header supports sender-to-path signaling
for state maintenance and basic measurement. The Extended Header supports both sender-
to-path and path-to-receiver signaling, for carrying information for which there is no room in the
Basic Header, as well as for accumulated path information as in section 4.3 of [2].

2.1 Basic Header

The format of the PLUS header, together with the UDP header, is shown in Figure 3. Since
PLUS is designed to be used for UDP-encapsulated, encrypted transport protocols, overlying
transports are presumed to provide encryption and integrity protection for their own headers.
For the sake of efficiency, it is also assumed that this integrity protection can be extended to
the bits in the PLUS Basic Header.

The magic field is a 28-bit number that identifies this packet as carrying a PLUS header. This
magic number can be used by PLUS-aware devices on path to distinguish PLUS packets from
non-PLUS packets, since PLUS cannot be identified by UDP port number. It is chosen to avoid
collision with possible values of the first four bytes of any packet in widely deployed protocols
on UDP. This both minimizes the chance of accidental classification of a non-PLUS protocol as
PLUS, and makes it difficult to cause spurious PLUS packets to be generated by reflection or
amplification.

The next four bits provide flags: two per-packet Quality of Service (QoS) signals, a stop signal,
and an extended header bit. The (L)oLa flag, when set, indicates that the packet is latency
sensitive and prefers drop to delay. The (R)oI flag, when set, indicates that the packet is not
sensitive to reordering and thus does not need to be given the same treatment or routing as
other packets of the same flow. These two signals address many QoS challenges operators
face in current networks but cannot be reliably provided end-to-end by existing mechanisms,
such as the use of the Differentiated Services Codepoint (DSCP) field in the IP header [51].
The (S)top flag indicates a stop or stop confirmation signal when set. When the E(X)tended
Header bit is set, the Extended Header is present; see Section 2.2.

The Connection/Association Token (CAT) is a 64-bit token identifying this association. The CAT
is chosen randomly by the connection initiator, and allows both multiplexing of flows over a
5-tuple as well as fast rebinding: a PLUS packet sharing one endpoint (source address/port
pair, or destination address/port pair) and the CAT with an existing flow is taken to belong to
that flow, since the other endpoint identifier might change due to a mobility event or address
translation change. The CAT also can be used as an identifier to maintain state for stateful
in-network processing.

The Packet Serial Number (PSN) is a 32-bit serial number for this packet. The initial PSN for
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PCF Value (varlen)             

UDP source port UDP destination port

UDP length UDP checksum

magic 0xd8007ff L R S X

Connection and Association Token (CAT)

Packet Serial Number (PSN)

Packet Serial Echo (PSE)

Transport-Layer Headers (encrypted)

PCF Type PCF Len II

Figure 3: The PLUS header format. The Basic Header (X=0) omits the PCF fields; the Extended
Header (X=1) has all fields.

each direction in a flow is chosen randomly. Each subsequently sent packet in a flow increments
the PSN by one, wrapping around. Respectively, the Packet Serial Echo (PSE) is the most
recent PSN seen by the sender in the opposite direction before this packet was sent. If no
packet has yet been seen by the sender (i.e., the packet is the first packet in a bidirectional
flow), the sender sets the PSE to zero. The CAT and PSE together serve as an indication
that a packet was actually seen by the remote endpoint, and used for confirmation and stop-
confirmation signals to protect against off-path attacks and as an indication for on-path state
management. PSN and PSE together can also be used for in-network latency measurement
as described in Section 1.3.

When a sender has a packet ready to send using PLUS, it determines the values in the Basic
Header as follows:

1. The magic number is set to the constant 0xd8007ff.

2. If the sender is the flow initiator, and the packet is the first packet in the flow, the sender
selects a cryptographically random 64-bit number for the CAT. When multiplexing, it must
ensure the CAT is not already in use for the 5-tuple. Otherwise, the sender uses the CAT
associated with the flow.

3. If the packet is the first packet in the flow in this direction, the sender selects a crypto-
graphically random 32-bit number for the PSN. Otherwise, the sender adds one to the
PSN on the last packet it sent in this flow, and uses that value for the PSN. If the last PSN
is 0xffffffff, it wraps around, setting the PSN to 0x00000001. A PSN of 0x00000000 is
never sent.

4. If the packet is the first packet in the flow in this direction, the sender sets the PSE to
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0x00000000. Otherwise it sets the PSE to the PSN of the last packet seen in the opposite
direction.

5. If the overlying transport determines that this packet is loss- insensitive but latency-
sensitive, the sender sets the L flag.

6. If the overlying transport determines that this packet may be freely reordered, the sender
sets the R flag.

7. If the overlying transport determines that the connection is shutting down, and no further
packets will be sent in this direction other than packets part of this shutdown, the sender
sets the S flag; see Section 2.3.2 for details.

When a receiver receives a packet containing a PLUS Basic Header, it processes the values in
the Basic Header as follows:

1. It verifies that the magic number is the constant 0xd800fff. If the receiver is expecting a
PLUS packet, and it does not see this value, it drops the packet without further processing.

2. It verifies the integrity of the information in the PLUS Basic Header, using information
carried in the overlying transport. Packets failing integrity checks should be dropped,
but may be further analyzed by the receiver to determine the likely cause of verification
failure; reaction to the failure is transport and implementation specific.

3. It stores the PSN to be sent as the PSE on the the next packet it sends in the opposite
direction.

2.2 Extended Header

When the Extended Header bit is 1, the PLUS Extended Header is present. This header adds
a Path Communication Field (PCF) to the Basic Header, as shown in Figure 3. The Extended
Header has an 8-bit PCF type field, a 6-bit PCF length field, a 2-bit Integrity Indicator, and a
variable-length PCF value field, protected by the overlying transport encryption.

The PCF Type field defines the structure and semantics of the PCF value. The PCF Length field
defines the length of the PCF value field in bytes, from 0 to 63 bytes. The PCF Integrity Indicator
(II) is used to implement path-to-receiver as well as sender-to-path signaling, implemented by
treating a portion of the field as if all its bits are zero for purposes of integrity protection and
integrity verification. This protects the type and length of path-to-receiver signals, but allows
part or all of the PCF Value to be writable by devices on path.

If the Integrity Indicator is 00, the PCF value is not integrity protected; if it is 11, the PCF value
is integrity protected in its entirety. The other two values provide for partial integrity protection:
01 indicates that the the first quarter of the PCF value is protected; 10 indicates that the first
half of the PCF value is protected. The integrity protected range is always rounded up to the
nearest byte.
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2.3 Extended Header Types

This section defines a set of initial Extended Header types to illustrate the flexibility provided by
the Extended Header. Other PCF types are reserved for future use.

The PCF is used to expose loss and congestion markings to the path. PCF Type 1 indicates
the Loss and Congestion Exposure field, a field which is 2, 4, 8, or 16 bytes long, and contains
two 1, 2, 4, or 8 byte unsigned integers in network byte order. The first is a total count of
packets detected as lost by the sender since the start of the connection. The second is a count
of the total number of congestion markings (ECN CE codepoints) received by the sender since
the start of the connection. Its integrity indicator is always 11, since the information cannot be
modified by on-path devices. PCF Type 1 packets can be emitted as often as once per RTT as
estimated by the sender; lower rates result in less overhead, but lower fidelity measurements
by devices on path.

The PCF is also used for path accumulation; to be useful this requires deployment of future
PLUS-aware middleboxes. PCF Type 2 carries a two byte value reflecting the Path Maximum
Transmission Unit (PMTU), initialized to the MTU of the link on which the packet is initially sent.
When a PLUS-aware middlebox forwards a packet with this PCF, it updates the value with the
minimum of the value present and the MTU of the link over which it will forward the packet. The
integrity indicator for PCF Type 2 is always 00, since the path can modify the entire value.

PCF Type 3 carries an 8 byte field for path tracing, similar to the Path Changes mechanism
in section 4.3 of [2]. The sender chooses a random 8-byte value for each flow, and initializes
the PCF value field with this value for each packet with PCF Type 3 in the flow. Each on-
path PLUS-aware device forwards the packet fills the result of XORing the received value with
an 8-byte device identifier. The same randomly chosen value must be used for all path trace
accumulator signals. Packets traversing the same set of PLUS-aware forwarding devices are
therefore received with the same accumulated value, and changes to the set of devices on path
can be detected by the receiver. The integrity indicator for PCF Type 3 is always 00, since the
path can modify the entire value.

PCF Type 255 is reserved for extensions to the PCF mechanism. PCF Types 253 and 254 are
reserved for experimentation.

Devices on path must recognize that they are requested to participate in signaling by under-
standing the Extended Header and the semantics of each type. However, there is no guarantee
that they will participate or reply honestly. Therefore all signals are only advisory, guiding the
transport or application receiving them to take appropriate actions. In general, endpoints still
need to implement mechanisms to handle incorrect or incomplete exposed information, as to-
day when default values are assumed (e.g., the accumulated MTU should not be directly used
to set the segment size, but rather as input to a packetization layer path MTU discovery pro-
cess [24]).

2.4 Encrypted Feedback and the Transport layer API

Path-to-receiver signals transmit information requested from the path by the sender to the re-
ceiver; however, the sender often also needs the information that was requested. The transport
protocol running atop PLUS must therefore provide a feedback channel for the full PLUS Ex-
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tended Header on any packet received containing a PCF value where the integrity indicator
is not 11. Returning the entire header allows the sender to associate the value fed back with
the original packet sent; feedback of the entire header depending only on the II value allows
receivers to feed back PCF values they do not understand. We assume the overlying transport
provides end-to-end encryption, and that signals fed back do not need to be exposed to the
reverse path. The feedback channel interface must be designed on a per-transport basis.

Other mechanisms supported by PLUS as presently defined does not require much application
interaction: CAT, PSN/PSE, and the loss/congestion PCF all expose either information available
within PLUS, or that is readily available from the internals of the overlying transport. Similarly,
MTU accumulation is only useful at the transport layer, and path change detection is more
suited to diagnostic tools in the spirit of traceroute than online use by an application. Therefore,
the API presented by the transport does not need to change when a given transport is running
over PLUS. However, there can be further benefits if an application is aware of PLUS. The
decision to enable or disable PLUS on a given flow or node may be driven not only by the
needs of the transport protocol but also the application, or even the user, following the principles
of transparency and endpoint control. We discuss how to add PLUS-specific controls to our
flexible transport layer API in section 5.1.

2.5 On-Path State Maintenance

PLUS headers are added to packets by a sender and can be inspected by on-path devices
such as middleboxes. The first packet with a PLUS header forwarded by an on-path device for
a given 5-tuple plus CAT the a → b direction is used to establish initial state. When a packet
with a PLUS header with a reversed 5-tuple and identical CAT in the b→ a direction is observed
by the PLUS-aware on-path device this can be see as a confirmation to communicate to the
initiation endpoint. However, before final state is established, with potentially longer time-outs
or additional access rights, the on-path device should waits to see a packet with a PSE in the
a→ b direction equal to the PSN on the first reverse packet as a proof of return-routability.

A PLUS-aware on-path device observing a packet with the S flag set, for a flow that is has
state for, can prepare to remove that state but should wait until it sees a packet in the opposite
direction with the S flag set and the PSE set to exactly the PSN as in the PLUS packet with
the S flag set that was previously observed in the opposite direction. Otherwise, even though
the S flag is integrity-protected end-to-end, a packet with the S flag set could be forged by one
on-path device to drive the flow state to be removed on all downstream devices which could
lead to packet loss, additional latency, connectivity breakage, or full blocking of any further
transmission between the endpoint depending on the stateful network function that is provided
by the network device that is under attack. Waiting for the confirmation signal from the other
end makes this attack much harder, as it would require coordination between attackers on both
sides of a given on-path device in order to forge a confirmation of the stop signal. Further the
device should forward packets in both directions for flows before removing state completely for
about an additional RTT, or a time that is large enough to safely cover most common RTTs, as
packets might still be inflight, due to e.g. reordering, after the packets with the S bit set in both
directions have been observed.

One end of a PLUS association may change its address while maintaining on-path state; e.g.
due to a NAT rebinding. A PLUS-aware on-path device that forwards a packet where one of
the endpoint identifiers (address and port) and the CAT, but not the other endpoint identifier,
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match existing flow state, treats that packet as belonging to the existing flow, and updates the
endpoint identifier.

However, if state is lost or removed prematurely, the information in the Basic Header on each
packet provide enough information to reestablish state quickly even in the middle of a flow,
enabling fast recovery even in the case of such a coordinated attack.
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3 Applying Middlebox Cooperation Mechanisms to New
and Existing Protocols

The PLUS header, as described in the previous chapter, provides a clean architectural ap-
proach for middlebox cooperation, separating information that are intended to be consumed
by the path (the wire image [19]) from end-to-end signaling. This approach is necessary for
transport protocol evolution. The PLUS header thereby effectively introduces a new path layer
between the transport and network layers that provides signaling for stateful network devices.
While such in-network functions were not intended in the original Internet architecture, we can
no longer deny or ignore that these functions exis, and have even proven highly useful for net-
work management as well as in-network security, especially as a first wall of defense again
DDoS attacks.

However, deploying such a new protocol requires an alignment of incentives for all involved
parties: users, developers of endhost network stacks and applications, as well as developers
and deployers of network nodes. Moreover, a standardized protocol specification is necessary
to ensure interoperability.

Attempts to standardize middlebox cooperation approaches have been criticized as potentially
dangerous, as any additional information that is exposed in the clear can bear an additional risk
in the face of pervasive passive surveillance. The IETF has declined, for now, to begin work on
a generic, protocol-independent explicit middlebox cooperation mechanism, due in large part
to this criticism.

However, given the need to maintain existing in-network functions, such as firewalls, NATs,
or load-balancing, while increasing deployment of encryption and thereby limiting the informa-
tion available to the path, specific middlebox cooperation mechanism are still under discussion
and standardization, embedded into existing protocols or new protocols currently in develop-
ment. While the project has consensus that the best way to solve this problem is a protocol-
independent approach for middlebox cooperation, we currently are active in standardization
by applying the mechanisms developed for PLUS to new and existing protocols. This section
provides more details about on-going activities and the chosen approaches.

Moreover, the project is performing further experiments based on PLUS as proposed. These
are intended as a proof of concept showing that the proposed solution and approach for specific
middlebox cooperation use cases are viable. However, we do not expect the deployment of
PLUS as specified in this deliverable without a more radical trend for redesigning protocol
stacks in the Internet protocol standardization community.

In our experiment, we show how these concepts can be applied to other protocols, especially
the QUIC protocol which is a new, encrypted transport that is currently under standardization
in the IETF with an expected large impact on the near-future Internet traffic.

In this chapter we first focus on the most basic signaling requirement for stateful in-network
devices, flow state management. In the next section we detail a protocol-independent state
machine to be implemented by network devices that aim to support state management for
different protocols, and show how the input signals that drive the state machine are applicable
to different protocols with PLUS, TCP, and QUIC as examples.

Further, we detail how concepts derived from the information provided by the Basic PLUS
header such as the packet number and packet number echo, the connection ID, and the
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(L)atency flag can be applied and adopted for latency measurements, packet flow binding,
and latency support in other protocols, such as QUIC, DTLS, or DiffServ.

Finally, we discuss how mechanisms provided by the PLUS Extended Header PCF Types 1
and 2, for congestion exposure and path MTU discovery, can be utilized by a new transport
protocol like QUIC or a new UDP signal mechanism that enables option space for UDP-based
protocols.

3.1 Protocol-independent State Management

As most complex in-network functions are stateful, the most basic signaling requirement for on-
path network functions is to support state maintenance, through on-path recognition of session
establishment and disestablishment. In the current, TCP-dominated Internet, this is provided
by passive observation of the TCP three-way handshake and the FIN and/or RST flags on
connection shutdown. These are visible on the path between endpoints, and therefore are
often used by those network devices for state management by devices such as NATs and
firewalls.

The most important signals derived from these observations concern flow lifetime and associ-
ation of the two directions of a bi-directional flow, associating a uniflow with its reverse counter-
part. Firewalls and other stateful network elements can use this association to assume endpoint
consent to communicate. A stop signal that indicates the last packet of a flow can also assist
state management, and allows for a longer timeout for active flows than presently possible for
UDP [14], reducing the rate at which keep-alive traffic must be sent to avoid loss of on-path
state. Stateful network devices can apply stricter policies for a flow which does not provide
these signals, such as shorter timeouts to remove flow state, or rules to drop unknown traffic.

Figure 4 shows a transport-independent state machine that details the basic operation of
a stateful on-path device. This abstract state machine is also described an IETF Internet-
Draft in [21] providing input for the QUIC standardization process on manageability considera-
tions [20].

The state machine is designed to replace TCP state-tracking for firewalls and NAT devices.
When encrypted transport protocols encapsulated in UDP adopt a set of signals and a wire
format for those signals to drive this state machine, these middleboxes could continue using
TCP-like logic to handle those UDP flows. Recognizing the wire format used by those signals
would allow these middleboxes to distinguish “UDP with an encrypted transport” from undif-
ferentiated UDP, and to treat the former case more like TCP, providing longer timeouts for
established flows, as well as stateful defense against spoofed or reflected garbage traffic.

The state machine has the following properties:

1. A device on path that can see traffic in both directions knows each side of an association
wishes that association to continue. This allows firewalls to delegate policy decisions
about accepting or continuing an association to the servers they protect.

2. A device on path that can see traffic in both directions knows that each device can receive
traffic at the source address it provides. This allows firewalls to protect against trivially
spoofed packets, implemented by associating and associated states.

3. Both endpoints confirm the desire to end communication, providing resistance against
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Figure 4: A transport-independent path layer state machine.

early state expiry attacks (e.g. TCP RST injection) by on-path devices, implemented by
the stopwait and stopping states.

The first two properties hold with current firewalls and network address translation devices
observing the flags and sequence/acknowledgment numbers exposed by TCP.

The state machine has on six states, three configurable timeouts, and a set of signals.The
states are defined as follows:

1. zero: there is no state for a given flow at the device

2. uniflow: at least one packet has been seen in one direction

3. associating: at least one packet has been seen in one direction, and an indication that
the receiving endpoint wishes to continue the association has been seen in the other
direction.

4. associated: a flow in associating state has further demonstrated that the initial sender
can receive packets at its given source address.

5. stop-wait: one side of a connection has sent an explicit stop signal, waiting for confirma-
tion

6. stopping: stop signal confirmed, association is stopping.

The three timeouts are defined as follows:
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1. TO IDLE, the unidirectional idle timeout, can be considered equivalent to the idle timeout
for transport protocols where the device has no information about session start and end
(e.g. most UDP protocols).

2. TO ASSOCIATED, the bidirectional idle timeout, can be considered equivalent to the time-
out for transport protocols where the device has information about session start and end
(e.g. TCP).

3. TO STOP is the teardown timeout: how long the device will account additional packets
to a flow after confirming a close signal, ensuring retransmitted and/or reordered close
signal don’t lead to the spurious creation of new flow state.

Selection of timeouts is a configuration and implementation detail, but generally

TO STOP ≤ TO IDLE < TO ASSOCIATED;

see [14] for an analysis of the magnitudes of these timeouts in presently deployed gateway
devices.

The state machine is driven by four signals: a new flow signal, the first packet observed in a
flow in the zero state; an association signal, allowing a device to verify that an endpoint wishes
a bidirectional communication to be established or to continue; a confirmation signal, allowing a
device to confirm that the initiator of a flow is reachable at its purported source address; and a
stop signal, noting that an endpoint wishes to stop a bidirectional communication. There are a
different ways to implement these signals, as further explained in the next subsection for PLUS,
TCP, QUIC as example protocols.

For stateful in-network functions, every packet received by a device keeping per-flow state
must associate that packet with a flow in order to extract common properties to identify the flow
it is associated with. In general, the set of properties used for flow identification on presently
deployed devices includes the source and destination IP address, the source and destination
transport layer port number, the transport protocol number. The differentiated services field
[RFC2474] may also be included in the set of properties defining a flow, since it may indicate
different forwarding treatment. However, other protocols may use additional bits in their own
headers for flow identification.

When a device receives a packet associated with a flow it has no state for, it create a flow entry,
moves that flow from the zero state into the uniflow state and starts a timer TO IDLE. It resets
this timer for any additional packet it forwards in the same direction as long as the flow remains
in the uniflow state. When timer TO IDLE expires on a flow in the uniflow state, the device
drops state for the flow and performs any processing associated with doing so: tearing down
NAT bindings, stopping associated firewall pinholes, exporting flow information, and so on. The
device may also drop state on a stop signal, if observed.

We refer to the zero and uniflow states as “uniflow states”, as they are relevant both for truly
unidirectional flows, as well as in situations where an on-path device can see only one side
of a communication. We refer to the remaining four states as “biflow states”, as they are only
applicable to true bidirectional flows, where the on-path device can see both sides of the com-
munication.

Devices that only see one side of a communication, e.g. if they are placed in a portion of a
network with asymmetric routing, use only the zero and uniflow states. In addition, true uniflows
- protocols which are solely unidirectional (e.g. some applications over UDP) - will also use only
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the uniflow-only states. In either case, current devices generally do not associate much state
with observed uniflows, and a short idle timeout is generally sufficient to expire this state.

A uniflow transitions to the associating state when the device observes an association signal,
and further to the associated state when the device observes a subsequent confirmation signal
from the other communication endpoint. If the flow has not transitioned from the associating to
the associated state after TO IDLE, the device drops state for the flow.

After transitioning to the associated state, the device starts a timer TO ASSOCIATED. It resets
this timer for any packet it forwards in either direction. The associated state represents a fully
established bidirectional communication. When timer TO ASSOCIATED expires, the device
assumes that the flow has shut down without signaling as such, and drops state for the flow,
performing any associated processing.

The transport-independent state machine uses bidirectional stop signaling to tear down state.
This requires a stop signal to be observed in one direction, and a stop confirmation signal to be
observed in the other, to complete tearing down an association. A stop signal indicates that a
flow is ending, whether normally or abnormally, and that state associated with the flow should
be torn down. A device on path moves the flow from uniflow state to zero, or from associated
state to stopwait state, to wait for a confirmation signal in the other direction. While in stopwait
state, state will be maintained until a timer set to TO ASSOCIATED expires, with any packet
forwarded in either direction reseting the timer.

The stop confirmation indicate that the endpoint receiving the stop signal confirms that the stop
signal is valid. The stop confirmation signal contains some assurance that the far endpoint has
seen the stop signal. When a stop confirmation signal is observed in the opposite direction
from the stop signal, the on-path devices moves the flow from stopwait state to stopping state.
When a flow enters the stopping state, it starts a timer TO STOP. The flow will then remain in
stopping state until the timer set to TO STOP has expired, after which state for the flow will be
dropped. The stopping timeout TO STOP is intended to ensure that any packets reordered in
delivery are accounted to the flow before state for it is dropped.

Stop signals, as association signals, could be forged by a single on-path device. However,
unless a stop confirmation signal that can be associated with the stop signal is observed in the
other direction, the flow remains in stop-wait state, during which state is maintained and packets
continue to be forwarded in both directions. So this attack is of limited utility; an attacker wishing
to inject state teardown would need to control at least one on-path device on each side of a
target device to spoof both stop and corresponding stop confirmation signals.

The proposed state machine is concerned only with states and transitions common to transport-
and function- independent state maintenance. Devices may augment the transitions in this
state diagram depending on their function. For example, a firewall that decides based on some
information beyond the signals used by this state machine to shut down a flow may transition it
directly to a blacklist state on shutdown. Or, a firewall may fail to forward additional packets in
the uniflow state until an association signal is observed.

Although all of these signals are required to drive the state machine described by this docu-
ment, note that association/confirmation and bidirectional stop signaling have separate utility. A
transport protocol may expose the end of a flow without any proof of association or confirmation
of return routability of the initiator. Alternately, the transport protocol could rely on short time-
outs to clean up stale state on path, while exposing continuous association and confirmation
signals to quickly reestablish state.
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3.1.1 Implementation Considerations for Association and Confirmation
Signaling

An association signal indicates that the endpoint that received the first packet seen by the de-
vice has indeed seen that packet, and is interested in continuing conversation with the sending
endpoint. This signal is roughly an in-band analogue to consent signaling in Interactive Con-
nectivity Establishment (ICE) [29], that is carried to every device along the path.

A confirmation signal indicates that the endpoint that sent the first packet seen by the device
is reachable at its purported source address, and is necessary to prevent spoofed or reflected
packets from driving the state machine into the associated state. It is roughly equivalent to the
final ACK in the TCP three-way handshake.

These two signals are related to each other, in that association requires the receiving endpoint
of the first packet to prove it has seen that packet (or a subsequent packet), and to acknowledge
it wants to continue the association; while confirmation requires the sending endpoint to prove
it has seen the association token.

Transport-independent, path-verifiable association and confirmation signaling can be imple-
mented using three values carried in the packet headers: an association token, a confirmation
nonce, and an echo token.

The association token is a cryptographically random value generated by the endpoint initiating a
connection, and is carried on packets in the uniflow state. When a receiving endpoint wishes to
send an association signal, it generates an echo token from the association token using a well-
known, defined function (e.g. a truncated SHA-256 hash), and generates a cryptographically
random confirmation nonce. The initiating endpoint sends a confirmation signal on the next
packet it sends after receiving the confirmation nonce, by applying a function to the echo token
and the confirmation nonce, and sending the result as a new association token.

Devices on path verify that the echo token corresponds to a previously seen association token
to recognize an association signal, and recognize that an association token corresponds to a
previously seen echo token and confirmation nonce to recognize an association signal.

If the association token and confirmation nonce are predictable, off- path devices can spoof
association and confirmation signals. In choosing the number of bits for an association token,
there is a tradeoff between per-packet overhead and state overhead at on-path devices, and
assurance that an association token is hard to guess. This tradeoff must be evaluated at
protocol design time.

There are a few considerations in choosing a function (or functions) to generate the echo token
from the association token, to verify an echo token given an association token, and to derive
a next association token from the echo token and confirmation nonce. The functions could be
extremely simple (e.g., identity for the echo token and addition for the nonce) for ease of im-
plementation even in extremely constrained environments. Using one-way functions (e.g., trun-
cated SHA-256 hash to derive echo token from association token; XOR followed by truncated
SHA-256 hash to derive association token from echo token and confirmation nonce) requires
slightly more work from on-path devices, but the primitives will be available at any endpoint
using an encrypted transport protocol. In any case, a concrete implementation of association
and confirmation signaling must choose a set of functions, or mechanism for unambiguously
choosing one, at both endpoints as well as along the path.

There are two possible points in the design space here: these signals could be continually
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exposed throughout the flow, or could be exposed only on the first few packets of a connection
(those corresponding to the cryptographic and/or transport state handshakes in the overlying
protocols).

In the former case, an on-path device could re-establish state in the middle of a flow; e.g. due
to a reboot of the device, due to a NAT association change without the endpoints’ knowledge,
or due to idle periods longer than the TO ESTABLISHED timeout value. The on-path device
would receive no special information about which packets were associated with the start of as-
sociation. In this case, the series of exposed association tokens, echo tokens, and confirmation
nonces can also be observed to derive a running round-trip time estimate for the flow.

In the latter case, an on-path device would need to observe the start of the flow to establish
state, and would be able to distinguish connection-start packets from other packets.

3.1.2 Signal mapping for PLUS

The PLUS Basic Header provides all signaling required for the proposed state machine. A
PLUS-aware on-path device can associate a packet to a flow based on a 5-tuple and CAT. If a
packet is observed that does not have a flow in uniflow state yet, that packet is assumed to be
the first packet of a flow and flow state is created (in uniflow state).

A PLUS-aware on-path device forwarding a packet with a PLUS Basic Header with a matching
5-tuple and CAT as a flow in the uniflow state, but in the opposite direction, moves that flow to
the associating state. It stores the PSN of the packet that caused this transition, and waits for
a packet in the a other direction containing a PSE as a confirmation siganl to transition the flow
to the associated state. In associated state, every packet with a PLUS Basic Header identified
by the 5-tuple and CAT resets the timer.

The S flag in the PLUS Basic Header provides the stop signal. When the S flag is observed
and the flow moves to the stopwait state, the network devices also needs to store the PSN on
the packet causing the transition. When it sees a packet in the opposite direction with the S
flag set and the PSE set to exactly the stored PSN, it transitions the flow to closing state.

3.1.3 Signal mapping for TCP

A mapping of TCP flags to transitions in to the state machine shows how devices currently
using a model of the TCP state machine can be converted to use this state machine.

TCP provides start-of-flow association only. A packet with the SYN and ACK flags set in the
absence of the FIN or RST flags, and an in-window acknowledgment number, is synonymous
with the association signal. A packet with the ACK flag set in the absence of the FIN or RST
flags after an initial SYN, and an in-window acknowledgment number, is synonymous with the
confirmation signal.

For a typical TCP flow the state machine is performing the flowing steps:

1. The initial SYN places the flow into uniflow state.

2. The SYN-ACK sent in reply acts as a association signal and places the flow into associ-
ating state.
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3. The ACK sent in reply acts as a confirmation signal and places the flow into associated
state.

4. The final FIN is a stop signal.

5. And the ACK of the final FIN is a stop confirmation signal, moving the flow into stopping
state.

Note that abnormally closed flows (with RST) do not provide stop confirmation, and are there-
fore not provided for by this state machine. Due to TCP’s support for half-closed flows, addi-
tional state modeling is necessary to extract a stop signal from the final FIN.

Note also that the association and stop signals derived from the TCP header are not integrity
protected, and association and confirmation signals based on in-window ACK are not particu-
larly resistant to off-path attacks. The state machine is therefore more susceptible to manip-
ulation when used with vanilla TCP as when with a transport protocol providing full integrity
protection for its headers end-to-end, such as PLUS or QUIC.

3.1.4 Signal mapping for QUIC

QUIC [16] is a new, encrypted transport protocol that is currently under standardization in the
IETF. As such it is a moving target; this discussion refers to the most recent published version
of the draft specifications as of this writing.

QUIC’s handshake is visible to on-path devices, as it begins with an unencrypted TLS hand-
shake that exposes a 64-bit connection ID, which can serve as an association and echo token.
The function of the confirmation nonce is not fully exposed to the path at this point, but could
be implemented by echoing the random initial packet number.

However, there is no stop signal, and the emerging consensus of the working group is that a
stop signal is unnecessary. Therefore, QUIC state maintenance must rely on timeouts alone
to drop state. When implemented for QUIC, the state machine described here should use a
TO ASSOCIATED equal to or nearly equal to TO IDLE; the close transitions will never occur.

3.2 Latency Measurements

The PLUS Basic Header’s PSN and PSE provide a TCP-equivalent explicit signal for measur-
ing upstream and downstream round-trip time, as detailed in section 1.3. In case of QUIC the
wire image already includes a packet number which works like the PLUS PSN. The project
proposed to include a packet number echo to restore the ability to use this information for la-
tency measurements. However, this proposal was rejected in part for being too high-overhead.
In addition, the working group is currently discussing an approach to also encrypt the packet
number, which would break the semantics of a PSE. We therefore turn our attention to low-
overhead explicit support for latency measurement.

It is possible to provide one RTT sample per RTT to on-path observers using a spin bit, as we
have proposed to add to the QUIC transport protocol [47]. This mechanism works by adding a
single bit to the header (in the case of QUIC as currently proposed [16], the short header only
that is used after the handshake) containing the sender’s spin value. Each endpoint maintains
its spin value as follows:
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• The server initializes its spin value to 0. When it receives a packet from the client, if that
packet increments the highest packet number seen by the server from the client, it sets
the spin value to the spin bit in the received packet.

• The client initializes its spin value to 0. When it receives a packet from the server, if the
packet increments the highest packet number seen by the client from the server, it sets
the spin value to the opposite of the spin bit in the received packet.

Note that the requirement to only update the spin value on packets which increment the max
packet number seen ensures that the spin value will not oscillate spuriously in the presence of
packet reordering.

When a client or server sends a packet, it sets the spin bit to its current spin value. In this
way, when a flow is sending at full rate (i.e., not application limited), the spin bit in each direc-
tion changes value once per round-trip time (RTT). An on-path observer can observe the time
difference between edges in the spin bit signal in a single direction to measure one sample
of end-to-end RTT. Note that this measurement, as with passive RTT measurement for TCP,
includes any transport protocol delay (e.g., delayed sending of acknowledgements) and/or ap-
plication layer delay (e.g., waiting for a request to complete). It therefore provides devices on
path a good instantaneous estimate of the RTT as experienced by the application. A simple
linear smoothing or moving minimum filter can be applied to the stream of RTT information to
get a more stable estimate.

An on-path observer that can see traffic in both directions (from client to server and from server
to client) can also use the spin bit to measure “upstream” and “downstream” component RTT;
i.e, the component of the end-to-end RTT attributable to the paths between the observer and
the server and the observer and the client, respectively. It does this by measuring the delay
between a spin edge observed in the upstream direction and the corresponding edge observed
in the downstream direction, and vice versa.

The proposed spin bit is currently under discussion in the QUIC working group for addition to
the protocol. See our proposal [47] for more details.

3.3 Packet Flow Binding using Connection ID

The PLUS header, as well as the currently proposed QUIC wire image, expose, in addition to
the source/destination IP address/port and protocol type 5-tuple, a connection ID that can be
used to group packets into a flow even if parts of the 5-tuple changes, e.g. because of mobility
or NAT rebindings.

The DTLS protocol [31] does not specify the use of a connection ID, therefore the end-to-end
security association is bound to the 5-tuple only, and relies on its stability. This assumption is
acceptable in cases where the traffic pattern is dense enough to keep the NAT binding alive
(Linux default timeout for UDP traffic is only 3 minutes, as opposed to TCP’s 5 days), maybe
at the cost of creating synthetic keep-alive traffic, for example, using the TLS heartbeat exten-
sion [49]. This strategy is not particularly robust because choosing the right keep-alive clocking
depends on many external factors which might change after the endpoints are deployed. Obvi-
ously, the instability of the 5-tuple can always be worked around by re-establishing the security
association, but key agreement is a compute-intensive operation.
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While most endpoints can bear the costs of 5-tuple ephemerality (either via keep-alive or re-
handshaking), the class of IoT devices that use a Constrained Application protocol (CoAP) [35]
over DTLS [48] stack, are resource constrained, and battery operated cannot. For them, waking
up from a sleep cycle only to find the security session can’t be de-referenced anymore on server
side because the 5-tuple is gone is a complete disaster in terms of battery management. It
should also be noted that the state that is dropped on the NAT box immediately becomes dead
state in the server, consuming precious resources on an endpoint that could also be memory
constrained. So, a connection ID is an unavoidable necessity for these use cases and [32] is a
recent proposal by the project to address that.

Further, in typical IoT deployments, where a certain (potentially very high) number of sleepy
nodes wakes up every t seconds, send a small update to a collector node, and then go back to
sleep, the connection ID is also a very valuable tool for diagnostic. If t is higher than the UDP
NAT timeout, each time the node sends the update, the 5-tuple is different and the connection-id
is the only stable identifier that can be used to detect anomalies in the flows’ aggregate.

3.4 Low Latency Support

Based on the observable trend that the number of latency sensitive application that are not well
supported by todays network management approaches is strongly increasing, the PLUS Basic
header provides the L flags to indicate their latency needs to latency-aware networks.

Similar to the L flags in PLUS, a new PHB (Per-Hop Behavior) group called Loss-Latency
Tradeoff (LoLa) [51] has been proposed as an extension to the DiffServ [28] marking scheme.
The LoLa group, similar proposed for as the PLUS L flag, provides a radical simplification of
the DiffServ model compared to traditional marking schemes. Traffic belongs to one of two
classes: loss-sensitive (Lo) or latency-sensitive (La). Applications explicitly mark their flows as
belonging to one of the classes using the respective DiffServ codepoint (DSCP), and thereby
signal their intended service treatment to the network. The network should treat these two
classes differently, for example by using two queues with different configuration: one short
queue (or one that uses an AQM optimized for low queueing delay) which might induce higher
loss rates, and one larger queue that is optimized for high throughput and low loss. This trade-
off forms the basis of a cooperative game in which the participants have no incentive to lie. In
fact, users cannot get an advantage in the treatment of their flows by cheating about their real
nature because they would have to suffer self-inflicted high delay or high loss as a consequence
of the incorrect marking.

Another nice property of LoLa is that it is mobile network friendly. The scheme fits well with
the QoS model defined by 3GPP LTE [1] where the Lo and La markings have a straightforward
mapping into the set of QoS class identifiers (QCI) - i.e., QCI 6, 8 or 9 for Lo and QCI 7 for
La - and can be used by the radio resource manager in the eNodeB to inform its scheduling
decisions. This makes it particularly attractive for use on the mobile access network where
today Internet-bound flows are typically bundled together into one “default bearer” whose QCI
(typically, 9) has latency and loss rate targets (i.e., 300 ms and 10-6, respectively) that are
incompatible with real-time traffic requirements. An additional application of LoLa to the mobile
network is its potential impact on handover. In [27], the authors explore the behaviour of TCP
flows that go through different kinds of handover in LTE and find that seamless handover is
low-latency friendly whereas lossless handover helps with high-throughput flows. If available,
the Lo and La signals would help the mobile network choosing the most appropriate handover
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strategy for a certain user at a certain time.

One drawback of LoLa as currently specified is that it is based on DSCP. Although use of DSCP
is perfectly reasonable within the boundaries of the same organisation – e.g., if applied to flows
between users attached to the Radio Access Network (RAN) and application servers sitting in
the SGi-LAN of the same mobile operator, when the marking needs to survive organisational
boundaries, then a strongly authenticated end-to-end signal as proposed in [45], would pro-
vide a better alternative, which avoids easy theft-of-service or, even worse, denial-of-service by
on-path attackers. Alternative bearers for the LoLa signal, besides an explicit path layer mech-
anism as proposed by PLUS, could include the QUIC [17] header, or the UDP options [38]
framework (also see below in section 3.6.

3.5 Congestion Measurement

Congestion Exposure (ConEx) [23] is an approach that has been standardized as an IPv6 ex-
tension header [18]. The extension header carries an Destination Option that provides two bits
to indicate that a previously sent packet was either congestion marked with the ECN Conges-
tion Experienced (CE) codepoint or lost. A network node can use this information, similar to
counting retransmission for TCP flow, to measure congestion for monitoring purposed or per-
form congestion policing based on these measurement information and per-user congestion
allowances.

The PLUS Extended Header provides similar information with the PCF Type 1. However, in-
stead of using one bit for each lost or marked packet it exposes directly the counters for lost
or marked packets (since flow start) as maintained by the sender and estimated to measure
congestion in the network.

A similar approach to the ConEx-based one-bit signaling was also proposed for congestion
measurements in QUIC. However, with the potential encryption of the packet number, this in-
formation can not be used to detect reordering on-path anymore, and therefore a different
mechanism is currently under discussion that can be used to detect reordering as well as loss.

In this proposal one or multiple bits are used to provide square-wave signal(s) with different fre-
quencies. E.g if one signal toggles between one and zero with every packet this could be used
to reliably detected single-packet reordering. A signal that changes after a higher fixed number
of packets provides better information about packet loss and the reorder extend (meaning how
far a packet got reordered). This with such a signal the choice of the square wave determines
how reliably and accurate loss and reordering can be detected and measured, of course de-
pending on the expected loss and reordering pattern. The project is currently investigating the
trade-offs and actively participates in the discussion in the QUIC working group.

3.6 PMTU Discovery

Protocol headers added by middleboxes in the network path can reduce the maximum packet
size that is supported for a particualr network path. TCP can discover an appropriate Path
MTU when middleboxes are present through mechanisms such as MSS-Clamping or Packe-
tization Layer PMTU. However, many modern transports are based on UDP, and no currently
standardised methods exist to allow a UDP sender to find a suitable the maximum segment
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size for datagrams carried through all middleboxes a path. In PLUS we address this problem
with PCF Type 2 that actively enables middlebox to communicate their maximum support MTU
to the endpoints.

Datagram PLPMTUD [11] is an IETF work in progress that seeks to add MTU Discovery for
Datagram Packetization Layers (PLs) and thereby UDP based applications. In the absent of an
explicit middlebox cooperation mechanism, it uses both active probes and ICMP-based signals
from the network to perform MTU searching on the network. Signals may be provided from the
network when an ICMP Packet Too Big (PTB) message is observed or an upper layer signal
can provide a known MTU to the Datagram Packetization Layer.

Datagram PLPMTUD requires that the Packetization Layer be able to:

• Signal local MSS

• Send Probe packets

• Provide Reception Feedback

• Parse PTB Signals

UDP Options [39] is an IETF work in progress that seeks to add TCP style options to UDP.
The UDP Option space is created by using redundancy in the UDP specification between the
payload length field in the IP header and the length field in the UDP header. This redundancy
is used in the proposed specification to indicate an option offset for trailing data appended to a
UDP Datagram. UDP Options are encoded using a Type Length Value (TLV) syntax similar to
TCP Options.

UDP Options can be used to carry additional metadata to application data on a UDP flow,
resembling the signalling provided in a PLUS PCF. The primary role of UDP Options is for
end-to-end communication, such as e.g. a timestamp option similar as specified for TCP. Most
options are at least 2 bytes long, however, there are three options types used for framing and
describing the option space. These options are the End of Option List (EOL), No Operation
(NOP), intended for padding to byte alignment boundaries, and the OCS (Option Checksum)
used to manage integrity of the option area. For PLPMTUD a new UPD option could be used
that carries the needed information for the path probing and thereby exposed the desired PMTU
to the network.

The project more generally explores how UDP options can be used for middlebox cooperation
on a network path, with a current focus on experiments on the use of UDP options to allow
middleboes to engage in Datagram PLPMTUD.
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4 Security and Privacy Analysis of Middlebox Cooper-
ation Mechanisms

The deployment of explicit middlebox cooperation mechanisms, such as provided by PLUS,
provides information to network devices on the path, usually in the clear as we cannot require
the establishment of a cryptographical relationship between the endpoints and any middlebox
function on the path. In contrast, the deployment of encrypted transport protocols is intended to
reduce the information available to devices on path, to prevent malicious manipulation or inad-
vertant disclosure of information beyond the endpoints. Adding explicit communication between
endpoints and on-path devices must therefore be done carefully. Any additional information ex-
posure must consider the security and privacy of the data carried by and the internal operation
of the overlying transport. Further, it is especially important to prevent unintended exposure
of information from the encrypted payload that could be used for unauthorized on-path inspec-
tion, and design these middlebox cooperation carefully to prevent the creation of new attack
channels against transports using middlebox cooperative features.

This chapter examines the kinds of attacks that could be performed against new and existing
protocol that provide middlebox cooperative features, with PLUS as an example for a protocol
that was explicitly designed to enable middlebox cooperation, as well as other examples that
can already be found in existing protocols. We consider the middlebox cooperation mecha-
nisms in light of an idealized attacker model given in RFC 7624 [6], and compare it to the kinds
of information leaked implicitly by current transport protocols.

This is an abbreviated version of a more complete analysis contained in a project-internal
whitepaper “Red Team Analysis of Middlebox Cooperation Protocols” by Thomas Fossati, Ro-
man Müntener and Stephan Neuhaus, with additional contributions by Gorry Fairhurst and Mirja
Kühlewind.

4.1 Terms and Attacker Model

For the purposes of this chapter, we will assume that any protocol has zero or more of the
following components:

Cleartext header fields are fields appearing on each packet in the protocol that are visible to
path elements in the clear, with semantics that are predefined by the protocol specifica-
tion. Header fields are collected in a header that either has a fixed or variable size.

Scratch space is defined as fields or “space” in a packet header that may be re-written by
middleboxes on the path. The difference between scratch space and e.g. header injection
is that scratch space is set by the sender of the packet and (re-)writing the space will
change the bits but not add any additional bits.

Integrity protection may or may not be applied to any part of the packet, except scratch space.
If used, it ensures that the receiver can detect unauthorized changes by middleboxes to
information in the header fields or the rest of the protocol’s content. Part of the packet
that are not integrity protected, respectively, can be used as scratch space, even if not
intended by the actual protocol specification as long as the intended end-to-end function-
ality is not hampered.
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We call the endpoint that initiates communication the client, and the other endpoint the server.
We call the endpoint that sends a packet the sender, and the other endpoint the recipient.

We take RFC 7624 [6] as the basis of our attacker model. In [6] attacker is wholly passive, i.e.,
can look, but not modify packets. In contrast, we also consider an adversary that is allowed
certain modification of the packet if this furthers its goals. As such, our attackers:

• can observe every packet of all communications at any hop in any network path between
the endpoints;

• can observe data at rest in any intermediate system between the endpoints controlled by
the sender and the recipient;

• can share information with other such attackers; and

• may take other actions with respect to these communications (e.g., blocking, modification,
injection, etc.), as long as these actions do not cause the communication to be totally
disrupted.

That means, we also consider an attacker that can perform active attacks, short of denial of
service. Examples of blocking actions that fall short of denial of service include:

• dropping a single packet to force retransmission by the sender’s transport layer;

• blocking requests to certain DNS servers to force use of other DNS servers;

• blocking TLS-protected communications to force unprotected communications;

• shutting down a selected number of links in a multi-path scenario and thus forcing the
multi-path transport to use specific links, on which surveillance may be easier.

In general, the attacker wants to to remain undetected if at all possible, but this requirement
might be relaxed if the consequences of detection are outweighed by the usefulness of the
attack. This can happen for example if the attacker is so powerful that detection is without
consequence (low risk), or if the attack, if successful, would give the attacker information of
extremely high value (high pay-off).

We assume that communication is encrypted and integrity protected by default at or above the
transport layer, because this is increasingly the case. By default the only information that an
attacker can extract is metadata. However, it has been shown that metadata can be used to
infer information about the data itself. For example, flow records that carry only the 5-tuple and
the duration of the flow have been used to identify Skype traffic [43].

Out-of-band identification methods, e.g. linking a flow’s 5- or 6-tuple with an identifier or using
some other communication to export this linkage, is not considered, because it is practically
impossible for users and remote endpoints to detect and defeat.

In the following section we will discuss different attacks that can be run based on this attacker
model and evaluate the risk of different middlebox cooperation approaches.
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4.2 Side Channel Exfiltration

Providing a mechanisms for network elements to signal information to the endpoints, in-band,
by appending information to a packet of a flow, either explicitly by providing some scratch space
or through the (mis-)use of unprotected header fields, bears the risk that this (side) channel
can be utilized to exfiltrate information about the encrypted part of the communication or non-
public metadata about the application or user, such as personal user data that is known by the
middlebox.

One scenario is for a middlebox on the path—most likely a node close to the sender—to inject
information that it knows about the sender into the scratch space. This information may then be
read by middleboxes later on-path, thus leaking identifying information about the user to other
on-path devices.

However, this kind of side channel exfiltration is complicated by at least two factors. First, the
amount of scratch space per packet is usually small compared to the actual payload data; and
second, changing bits that were indented for a different use could change the semantics of the
protocol and must therefore be done carefully to not cause unintended side efforts. For exam-
ple, if information that is indicating the intended Quality of Service treatment, like the DiffServ
codepoint or the PLUS (L)atency Flag, is overwritten, this might have an negative impact on
the traffic itself, e.g. a packet that unexpectedly is more likely to be dropped at a congested
router router might have an highly negative impact on the congestion control decreasing the
flow throughput overly drastically.

In the case of PLUS, the maximum scratch space per packet is restricted by the 6 bit PCF
length field to 63 bytes of not integrity protected header space. However, the extended header
is controlled by the sender and as such not every packet might carry a that large scratch space
or any scratch space at all. Further, the PCF type may restrict the amount of valid values for a
certain PCF which further increased the ability to detect unauthorized side channel exflitration.
Still to be effective, integrity protection has to be checked and acted upon. The PLUS spec only
says the receiver should (as in RFC 2119 [8]) drop packets that fail the integrity verification.
The absence of a strict requirement on the receiving stack to fail hard makes room—at least in
theory—for 3rd party manipulation of any header bits or payload data.

In TCP, however, none of the header bytes are integrity protect. This does not mean that all
header bits can be used as side channel because changing the bits can change the protocol
behavior or make it disfunctional. However, there are opportunities for a middlebox to change
bits without being detectable, e.g. rewriting the initial sequence number, also see [41] for other
metadata injection attacks for both TCP as well as IP.

Even if the header is integrity protection, side channel exflitration can work as long as such
changes are undone before the packet reaches the remote endpoint. In this case the attacker
can exfiltrate data to the network portion between the attacker’s ingress and egress nodes. This
can be done in a way that is undetectable by either endpoint. In a more generic case, this type
of attack requires, however, a out-of-band side channel for coordination between the attacker’s
nodes.

While these side channels seems tempting on the first view, it actually is often easier for path
devices to utlise tunnel headers for adding metadata that might be needed for a variety of
purposes.

However, if done carefully this attack is hard to detect, and therefore could be desirable to the
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attacker. But it is an active attack that might not be preferred by a mostly passive adversary.

4.3 Coercion

Another concern about middlebox cooperation is that access networks could require endpoints
to supply packets with specific information or else they would refuse to forward the packets,
or refuse to forward them speedily. This would follow the familiar pattern in which privacy
advocates lobby for, and get, opt-in solutions to data tracking, only to find that companies only
offer their services to users who do in fact opt in. People who choose not to opt in are then
unable to use this service. If there is one dominant service of its kind available (e.g., Facebook
or Twitter), or if there is only one viable alternative, people may find they have no choice and
need to opt in.

Access network providers or even core networks could do the same to ease data exfiltra-
tion. They could force endpoints to provide (extra) scratch space, or face the penalty of being
dropped or of being put into the slow lane if they do not comply.

This attack is detectable and also active, and would therefore not be preferred by the mosty
passive adversary.

4.4 Application Fingerprinting

As described in [34], state of art encrypted traffic analysis based on machine learning can
successfully identify the type of transported application (e.g., HTTPS, SMTP, P2P, VoIP, SSH,
Skype) with good accuracy and without any need to access the clear-text.

In this context, and despite its limitations (i.e., fuzzy, coarse grained), even a 1-bit signal, such
as the L Flag in PLUS, could be used to improve the precision of the classifier. This signal
is non-malleable (can not be changed on-path). In contrast, the DiffServ [28] field used to
carry the LoLa signal can be and often is updated at edge routers to map to available QoS
treatments or to aggregate classes (including in some cases of completely bleaching the field).
As such integrity protected header information that is exposed to the path, make the information
provided it slightly more reliable signal compared using the DiffServ equivalent.

On the other hand not all bits in the header can be used to improve the traffic analysis of
encrypted traffic. Such the utility of these bits for fingerprinting does strongly depending on the
information they carry and may or may not be of high value for an attacker.

4.5 Linkability

By unlinkability we mean that “[w]ithin a particular set of information, the inability of an observer
or attacker to distinguish whether two items of interest are related or not (with a high enough
degree of probability to be useful to the observer or attacker)” [10, Section 3.2.]. Linkability
on the other hand can lead to identifiability, or it can help classification algorithms to become
more accurate by providing ground-truth information about the packets that would not be easily
available otherwise.
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PLUS as well as some other new protocols, like QUIC, have connection identifiers that explicitly
provide linkability. A connection identifier is a transport layer construct that allows endpoints
and middleboxes to uniquely identify an end-to-end connection/session even if the underlying
5-tuple changes due to NAT re-bindings, connection migration with multi-homing or multi-path.
For endpoints, the ability for a connection to survive such a migration is especially important
for encrypted protocols where session re-negotiation involves a handshake that is expensive
in terms of computation effort and latency. Examples of middleboxes that could utilise this
information include load balancers and firewalls.

The presence of a connection identifier obviously introduces linkability. Therefore, a good pro-
tocol design should take this into account and seek, as much as possible, to avoid linkability
by passive on-path adversaries between multiple source addresses or ports during mobility or
NAT rebind scenarios. This may not be always possible—e.g., when clients are unaware of
the address change (for example, when passing through NATs.) An example of a design that
satisfies this requirement is the a HOTP-based construction [25].

4.6 Localization

While RTT is a useful metric for network monitoring [3], it could also leak information about
the physical location of an endpoint. If the speed of signal propagation in a network is known
to be v, one could in theory measure the RTT from multiple vantage points and then use that
for geolocation. For example, assuming a connection has a RTT of x seconds, the endpoint
cannot be further away than 0.5xv meters. Each RTT measurement thus yields an exclusion
circle, outside of which the endpoint cannot be. If RTT measurements are then made from
several sufficiently distributed vantage points, it could be suggested that triangulation would
yield the endpoint position with some accuracy. This is an active attack that can be run with
basically any protocol that triggers an immediate response to an initially send packet, such as
the TCP handshake or just ICMP ping which is actually designed for this use case. However,
an attacker would need to have access to a number of well located vantage points. Therefore
for an passive attacker, explicitly exposing RTT, as proposed with the PSN and PNE for PLUS
or the spin bit for QUIC, gives them access to information provided by vantage points that they
would not otherwise have access to.

However, our experiments explored a model of propagation speed that is much more com-
plete than our extremely simplified model as described above [42]. Based on a large set of
traceroute-based measurement data from RIPE Altas we can conclude that RTT cannot reli-
ably be used for geolocation. In one experiment, the endpoint was in Milan, and the only RTT
measurement that could even locate that endpoint within Italy was one that was made by a pro-
cess running on the same machine as the endpoint. Even a vantage point that was in the same
equipment rack (but not on the same machine) as the endpoint could not locate that endpoint to
within Italy. Measurements from anywhere else were essentially meaningless due to the large
errors.

4.7 Analysis

Based on the previously described attacks and vulnerabilities, this section evaluates the secu-
rity risk of building a path protocol that reveals information to the network, and hence makes
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this information available to middleboxes that may exist on the end to end path. Middlebox co-
operation mechansims, no matter how it is encoded, will most likely have information with fixed
formats and meaning. However, even information with fixed formats can be abused for data
exfiltration and linkability. If data is integrity-protected, and data manipulation is required to not
disrupt normal operation, the abuse potential is further limited or the data need to be restored
to a close-to-original state before being delivered to the receiver. The potential for new abuse
comes from introducing explicit non-integrity protected scratch space, which seems to present
a larger risk to exfiltrate data.

For intra-network exfiltration, the adversary has to control a portion of the path through which
the packets travel. Such an adversary could also use other means to accomplish the same
effect, without even changing the original packets. One easy way would be for an adversary to
send control datagrams to an on-path device. Or, network operators can encapsulate packets
or add tunnel headers, or set tags in existing encapsulations.

As such the additional risk provided by explicit middlebox cooperation mechanism is rather
limited and the security risks of each function need to be weighed against the benefit from
making specific information visible to the network. Integrity protect and endpoint control can
further mitigate these risks as data manipulation can be detected and the utilized vulnerable
functions disable, if use if optional, or the connection terminated.
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5 Post Sockets: A protocol-independent API for flexi-
ble deployment of new protocols

The Post Sockets API described in this chapter provides a flexible interface to the transport
layer, regardless of the transport protocol in use or the capabilities it provides. The primary aim
of Post Sockets is to provide a compelling, modern, application-centric interface that provides
the flexibility to slot present and future transport protocol stacks under an application without
requiring a rewrite. Post’s design is focused on the following principles:

• Explicit Message orientation, with framing and atomicity guarantees for Message trans-
mission.

• Asynchronous reception, allowing all receiver-side interactions to be event-driven.

• Explicit support for multistreaming and multipath transport protocols and network archi-
tectures, including protocols for mobility support.

• Long-lived Associations, whose lifetimes may not be bound to underlying transport con-
nections. This allows associations to cache state and cryptographic key material to enable
0-RTT resumption of communication, and for the implementation of the API to explicitly
take care of connection establishment mechanics such as connection racing [50] and
peer-to-peer rendezvous [33].

• Protocol stack independence, allowing applications to be written in terms of the semantics
best for the application’s own design, separate from the protocol(s) used on the wire to
achieve them. This enables applications written to a single API to make use of transport
protocols in terms of the features they provide, following the approach of the the IETF
Transport Services (TAPS) working group [12].

This last feature is the most important for the deployability of middlebox cooperation protocols
in the Internet. First, it allows protocols which may or may not deploy on the Internet due to
interference to be dynamically selected based on the properties of the paths over which they
will run. For example, consider the case of attemtping to use a future reliable transport over
PLUS on a network which blocks all UDP other than DNS to an internal resolver. Currently, an
application would need to implement its own fallback mechanism; by dynamically selecting both
the primary and fallback stack via policies in Post Sockets, this fallback can be delegated to the
transport layer. Second, Post Sockets’ policy mechanism allows the preference or avoidance
of PLUS and/or certain PCFs to be set by the user and/or application developer.

This chapter represents the state of Post Sockets development reported in our workshop pa-
per [46], and is taken largely from that paper. Post Sockets is under active development and
standardization as the basis for an abstract, protocol-independent interface to the transport
layer in the IETF’s TAPS working group1, in cooperation with the H2020 NEAT project.

1see https://github.com/taps-api/drafts
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Figure 5: Abstractions and relationships in Post Sockets.

5.1 Overview and Concepts

Post Sockets replaces the traditional SOCK STREAM abstraction with an Message abstraction,
which can be seen as a generalization of the Stream Control Transmission Protocol’s [36]
SOCK SEQPACKET service. The API is centered around a Message Carrier which logically group
Messages for transmission and reception. A Carrier can be created actively via initiate() or pas-
sively via a listen(); the latter creates a Listener from which new Carriers can be accept()ed.
For backward compatibility, these Carriers can also be opened as Streams, presenting a file-like
interface to the network as with SOCK STREAM. Messages may be created explicitly and send()
over the Carrier, or implicitly through a simplified interface which uses default message prop-
erties (reliable transport without priority or deadline, which guarantees ordered delivery over a
single Carrier when the underlying transport protocol stack supports it). Whenever a Message
is fully reassembled at receiver side, an asynchronous callback will notify the application that a
received message is ready().

Message Carriers are bound to an long-lived Association which stores information about the
identity of a Local and a Remote endpoint, as well as cryptographic session resumption param-
eters. New Message Carriers will reuse an Association if they can be carried from the same
Local to the same Remote over an existing or newly found network Path; this re-use of an As-
sociation together with implementation of a Policy or a set of Policies defined by the application
or system may imply the creation of a new Transient representing a concrete Protocol Stack
Instance (PSI) assigned to an active Carrier.

The relationships among these elements are shown in Figure 5 and detailed in this section.
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5.1.1 Message Carrier

A Message Carrier (or simply Carrier) is a transport protocol stack-independent interface for
sending and receiving Messages between an application and a remote endpoint. Sending
a Message over a Carrier is driven by the application, while receipt is driven by the arrival
of the last packet that allows the Message to be assembled, decrypted, and passed to the
application. Receipt is therefore asynchronous; given the different models for asynchronous
I/O and concurrency supported by different platforms, it may be implemented in any number of
ways. The abstract API provides only for a way for the application to register how it wants to
handle incoming messages.

A Message Carrier that is backed by current transport protocol stack state (such as a TCP
connection) is said to be active: messages can be sent and received over it. A Message
Carrier can also be dormant : there is long-term state associated with it (via the underlying
Association; see next section), and it may be able to reactivated, but messages cannot be sent
and received immediately.

To exchange messages with a given remote endpoint, an application may initiate a Message
Carrier given its Remote and Local identities; this is an equivalent to an active open. There are
four special cases of Message Carriers, supporting different initiation and interaction patterns:

Listener A Listener only responds to requests to create a new Carrier, analogous to a server
or listening socket in the present sockets API. Instead of being bound to a specific remote
endpoint, it is bound only to a local identity. Accepting an incoming request will fork a fully
fledged Message Carrier.

Source A Source is a special case of Message Carrier over which messages can only be sent,
intended for unidirectional applications such as multicast transmitters.

Sink A Sink is a special case of Message Carrier over which messages can only be received,
intended for unidirectional applications such as multicast receivers.

Responder A Responder may receive messages from many remote sources, for cases in
which an application will only ever send Messages in reply back to the source from which
a Message was received. This is a common implementation pattern for servers in client-
server applications.

A Message Carrier may be morphed into a Stream, in order to provide a strictly ordered, reli-
able service as with SOCK STREAM. Morphing a Message Carrier into a Stream should return a
file-like object as appropriate for the platform implementing the API. Typically, both ends of a
communication using a stream service will morph their respective Message Carriers indepen-
dently before sending any data, based on application layer knowledge about the configuration
used by the other endpoint. This is mainly for backwards comparability with existing non-Post-
Sockets stacks as well as an easy path for migration for existing application implementations. If
supported by the underlying transport protocol stack, a Stream may be forked: creating a new
Message Carrier associated with a new Message Carrier at the same remote endpoint.
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5.1.2 Message

A Message is an atomic unit of communication between applications. A Message that cannot be
delivered in its entirety within the constraints of the network connectivity and the requirements of
the application is not delivered at all. Messages can represent both relatively small structures,
such as requests in a request/response protocol such as HTTP; as well as relatively large
structures, such as files of arbitrary size in a file system. In the general case, there is no
mapping between a Message and packets sent by the underlying protocol stack on the wire:
the transport protocol may freely segment messages and/or combine messages into packets.

Applications can register callbacks to be asynchronously notified of three events on Messages
they have sent: that the Message has been transmitted, that the Message has been acknowl-
edged by the receiver, or that the Message has expired before transmission/acknowledgment.
Not all transport protocol stacks will support all of these events.

A Message has a set of properties used by the sending transport, along with information about
the properties of the Paths available, to determine when to send which Message down which
Path. Post Sockets provides a set of core properties (Lifetime, Niceness, Latency Sensitivity,
Reordering Sensitivity, Immediacy, and Idempotence). In addition, Messages may have ad-
ditional arbitrary properties which can be used by the underlying protocol stacks for further
purposes.

The core properties defined by Post Sockets are as follows:

Lifetime A wallclock duration before which the Message must be available to the application
layer at the remote end or otherwise will be useless. As soon as it is known that a
lifetime cannot be met, the Message is discarded. Messages without lifetimes are sent
reliably if supported by the transport protocol stack. Lifetimes are also used to prioritize
Message delivery. There is no guarantee that a Message will not be delivered after the
end of its lifetime; for example, a Message delivered over a strictly reliable transport will
be delivered regardless of its lifetime. Depending on the transport protocol stack used
to transmit the message, these Lifetimes may also be signaled to path elements by the
underlying transport, so that path elements that realize a lifetime cannot be met can
discard frames containing the Messages instead of forwarding them. Messages with a
lifetime

Niceness A priority among other messages sent over the same Message Carrier in an un-
bounded hierarchy most naturally represented as a non-negative integer. By default,
Messages are in niceness class 0 which is highest priority. By prioritization of certain
messages against others, e.g., blocking of smaller, latency-sensitive messages by large
non-latency-sensitive messages can be avoided. Niceness may be translated to a priority
signal for exposure to path elements (e.g., DSCP code-point) to allow prioritization along
the path.

Latency Sensitivity Marking a message as latency sensitive signals that it is better to drop
the message than to delay it; together with Lifetime, this is used by underlying transports
over PLUS to set the L bit in the PLUS Basic Header.

Reordering Sensitivity Marking a message as reordering insensitive signals that the applica-
tion does not care about the order the message is received in relative to other messages
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over the same Carrier; this can be used both as a hint to the underlying transport in se-
lecting paths, as well as to set the R bit in the PLUS Basic Header of underlying transports
that are PLUS-encapsulated.

Immediacy Marking a message as immediate signals to the transport protocol stack that its
application semantics require it to be sent out immediately, instead of waiting to be com-
bined with other messages or parts thereof (i.e., for media transports and interactive
sessions with small messages).

Idempotence If marked as idempotent the underlying transport protocol stack knows that its
application semantics make it safe to send in situations that may cause it to be received
more than once (i.e., for 0-RTT session resumption as in TCP Fast Open, TLS 1.3, and
QUIC).

5.1.3 Transient

A Transient represents a binding between an active Carrier and the instance of the transport
protocol stack that implements it. A Transient contains ephemeral state for a single transport
protocol stack over a single Path at a given point in time. A Carrier may be served by multiple
Transients at once, e.g., when implementing multi-path communication such that the separate
paths are exposed to the API by the underlying transport protocol stack. Each Transient serves
only one Message Carrier, although multiple Transients may share the same underlying proto-
col stack; e.g., in a multi-streaming protocol.

Transients are generally not exposed by the API, though they may be accessible for debugging
and logging.

5.1.4 Association

An Association contains the long-term state necessary to support communications between
a Local and a Remote endpoint, such as cryptographic session resumption parameters or
rendezvous information; information about the policies constraining the selection of transport
protocols and local interfaces to create Transients to carry Messages; and information about
the Paths through the network available between them. Three inputs are needed to establish
an Association: a remote, a local, and a policy.

Remote A Remote represents information required to establish and maintain a connection with
the far end of an Association: name(s), address(es), and transport protocol parameters
that can be used to establish a Transient; transport protocols to use; information about
public keys or certificate authorities used to identify the remote on connection establish-
ment; and so on. Each Association is associated with a single Remote, either explicitly
by the application (when created by the initiation of a Carrier) or a Listener (when created
by forking a Carrier on passive open).

A Remote may be resolved, which results in zero or more Remotes with more specific
information. For example, an application may want to establish a connection to a website
identified by a URL. This URL would be wrapped in a Remote and passed to a call to
initiate a Carrier. The first pass resolution might parse the URL, decomposing it into a
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name, a transport port, and a transport protocol to try connecting with. A second pass
resolution would then look up network-layer addresses associated with that name through
DNS, and store any certificates available from DANE. Once a Remote has been resolved
to the point that a transport protocol stack can use it to create a Transient, it is considered
fully resolved.

Local A Local represents all the information about the local endpoint necessary to establish
an Association or a Listener: interface, port, and transport protocol stack information, as
well as certificates and associated private keys to identify it.

Policy A Policy describes restriction and requirements from the application to select and con-
figure Transients for a communication between a Local and a Remote. For instance,
an application may require or prefer certain transport features [13] in the PSI(s) used
by the Transient(s) for a given Message Carrier. It may prefer Paths over one interface
to those over another (e.g., WiFi access over LTE when roaming on a foreign LTE net-
work, due to cost). Policy information, encapsulating application intent and constraint, is
thus expressed as implementation-specific configuration for the Message Carrier and the
Transient(s).

Policies are the primary interface between applications and PLUS as presently defined.
First, since the policy determines which transport protocol(s) will be tried and selected,
it determines which signals will be exposed to the path (e.g., certain protocols may use
the R and L bits in the Basic Header based upon their own sensitivities to reordering
and loss and/or the per-Message hints provided by the application), as well as whether a
PLUS-encapsulated protocol will be used at all. Second, policies can hint to PLUS what
information should be requested or exposed via the Extended Header; a PSI implement-
ing PLUS could provide a policy option to allow the application to configure the use and
frequency of the Loss and Congestion Exposure PCF, for instance, allowing fine-grained
control of the tradeoff between the passive measurability of the traffic and the overhead
required.

5.1.5 Path

A Path represents information about a single path through the network known by an Asso-
ciation, in terms of source and destination network and transport layer addresses within an
addressing context, and the provisioning domain [5] of the local interface. This information
may be learned through a resolution, discovery, or rendezvous process (e.g., DNS, ICE), by
active or passive measurements taken by the transport protocol stack, or by some other path
information discovery mechanism.

The set of available properties is a function of the transport protocol stacks such as the MTU,
expected one-way delay, expected probability of packet loss, expected maximum available data
rate or reserved data rate. These path properties may be derived from information learned from
the middlebox cooperation protocol, among other sources.
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5.1.6 Protocol Stack Instance (PSI)

A PSI encapsulates an arbitrary stack of protocols (e.g., TCP over IPv6, SCTP over DTLS+PLUS
over UDP over IPv4). PSIs provide the bridge between the interface (Carrier) plus the current
state (Transients) and the implementation of a given set of transport services [13]. A given
implementation makes one or more possible protocol stacks available to its applications. Se-
lection and configuration among multiple PSIs is based on system-level or application policies,
as well as on network conditions in the provisioning domain in which a connection is made.
For example, figure 6(a) shows a TLS over TCP stack, usable on most network connections.
Protocols are layered to ensure that the PSI provides all the transport services required by the
application. A single PSI may be bound to multiple message carriers, as shown in figure 6(b):
a multistreaming transport protocol like QUIC or SCTP can support one carrier per stream.
Where multistreaming transport is not available, these carriers could be serviced by different
PSIs on different flows. Multiple PSIs are bound to a single transient during establishment, as
shown in figure 6(c). Here, the losing PSI in a happy-eyeballs race will be terminated, and the
carrier will continue using the winning PSI. A special case of racing is fallback, as shown in fig-
ure 6(d). Here, one stack is given preference, and the second will only be initiated after a timer
expires or this stack fails. Fallback can be used to spur deployment of PLUS-encapsulated
transport protocols, by providing a generic mechanism to transparently use TCP when PLUS
is not available or useful on a given path.

5.2 Deployment Incentives and Standardizations Efforts

The current widely deployed BSD sockets interface forces a hard binding between applications
and transport protocols, making is impossible to deploy a new protocol without changing every
application to support it. Post Sockets addresses this problem, providing an initial, necessary
step for rapid large-scale deployment of new transport protocols and flexible use of stacked
protocols, e.g. enabling transport protocol header encryption and/or explicit middlebox cooper-
ation. This means an application that makes use of this new transport-independent interface
can benefit from new protocols and protocol mechanism automatically without any changes
in the code or configuration. Further, the transport layer underneath the Post Sockets inter-
face can provide additional functionality such as protocol racing, path testing, or rendezvousing
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which reduces the application’s complexity because these mechanism do not then need to be
implemented for each application separately.

Post Sockets is the basis of a current project contribution to the IETF TAPS working group, the
Transport Services Architecture and Interface, which aims to standardize the concepts elabo-
rated in Post Sockets as an abstract API, in order to drive future deployment of conceptually
similar implementations of networked applications to enable transport stack flexibility.
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6 Conclusion

This deliverable provides a specification of the PLUS middlebox cooperation protocol as devel-
oped by the MAMI project. It further presents the project’s current efforts to apply mechanisms
developed for use with PLUS and based on our experimentation experience with PLUS to ex-
isting and new transport protocols. These efforts include extensions of the QUIC wire image to
support measurability, signaling schemes for in-network low latency support, extensions to en-
cryption protocols such as DTLS to support in-network functions like load balancing, as well as
a general concept for state management that can be applied to different protocols that provide
certain signals to the network.

The project is currently performing further experiments on middlebox cooperation. These are
intended as a proof of concept showing that the proposed solutions and approaches for specific
middlebox cooperation use cases are viable. Despite PLUS forming a consistent specification
for the problem of middlebox cooperation, we do not expect the deployment of PLUS as speci-
fied in this deliverable without a more radical trend for redesigning protocol stacks in the Internet
protocol standardization community. In our experiments, we will show how these concepts can
be applied to other protocols, especially the QUIC protocol which is a new, encrypted trans-
port that is currently under standardization in the IETF with an expected large impact on the
near-future Internet traffic.

This deliverable further provides a generalized security analysis of middlebox cooperation
mechanisms, whether explicitly designed for cooperation (such as PLUS, or certain QUIC
header information), or implicitly used for cooprtation. This analysis defines an attacker model
and discusses different attacks using side channel exfiltration or coercion, as well as vulnera-
bilities that could be used for fingerprinting, linkability, or localization. This analysis showed that
the security risks of new path layer middlebox cooperation mechanisms that provide specific
information to in-network functions need to be weighed against the benefit from making these
information visible to the network, for each function separately.

Finally, this deliverable also documents parts of the project’s current work aimed at providing
a more flexible transport layer to support applications in runtime selection of protocols as well
as interfaces and paths. Runtime protocol selection, in particular, allows fallback in case a
middlebox cooperation approach like PLUS is not available on a given path or interface. To
enable these selection mechanisms, and thereby support the deployability of new protocols, it
is necessary to redesign the application-transport interface to flexibly support new protocol and
middlebox cooperation features when and where they are available, while not increasing the
complexity of each application.
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